Evolutionary Generation of Runge-Kutta Pairs

نویسنده

  • Y. G. Petalas
چکیده

Y. G. Petalas1, Ch. Tsitouras2, G. S. Androulakis3, and M. N. Vrahatis ∗1 1 Computational Intelligence Laboratory (CI Lab), Department of Mathematics, University of Patras Artificial Intelligence Research Center (UPAIRC), University of Patras, GR–26110 Patras, Greece 2 Department of Applied Sciences, TEI of Chalkis, GR–34400 Psahna, Greece 3 Department of Business Administration, University of Patras, GR–26110 Patras, Greece

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Singly diagonally implicit Runge-Kutta methods with an explicit first stage

The purpose of this paper is to construct methods for solving stiff ODEs, in particular singular perturbation problems. We consider embedded pairs of singly diagonally implicit Runge-Kutta methods with an explicit first stage (ESDIRKs). Stiffly accurate pairs of order 3/2, 4/3 and 5/4 are constructed. AMS Subject Classification: 65L05

متن کامل

Runge-Kutta pairs of order 5(4) satisfying only the first column simplifying assumption

Among the most popular methods for the solution of the Initial Value Problem are the Runge–Kutta pairs of orders 5 and 4. These methods can be derived solving a system of nonlinear equations for its coefficients. For achieving this, we usually admit various simplifying assumptions. The most common of them are the so called row simplifying assumptions. Here we negligible them and present an algo...

متن کامل

Runge-Kutta Pairs for Scalar Autonomous Initial Value Problems

We present the equations of condition up to sixth order for Runge-Kutta (RK) methods, when integrating scalar autonomous problems. Two RK pairs of orders 5(4) are derived. The first at a cost of only five stages per step, while the other having an extremely small principal truncation error. Numerical tests show the superiority of the new pairs over traditional ones.

متن کامل

On the Construction of Splitting Methods by Stabilizing Corrections with Runge-Kutta Pairs

In this technical note a general procedure is described to construct internally consistent splitting methods for the numerical solution of differential equations, starting from matching pairs of explicit and diagonally implicit Runge-Kutta methods. The procedure will be applied to suitable second-order pairs, and we will consider methods with or without a mass conserving finishing stage. For th...

متن کامل

Additive Runge-Kutta Methods for Stiff Ordinary Differential Equations

Certain pairs of Runge-Kutta methods may be used additively to solve a system of n differential equations x' = J(t)x + g(t, x). Pairs of methods, of order p < 4, where one method is semiexplicit and /(-stable and the other method is explicit, are obtained. These methods require the LU factorization of one n X n matrix, and p evaluations of g, in each step. It is shown that such methods have a s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013